Investigation on the Equilibrium Phase Diagrams of the Ternary Systems $CdCl_2-RECl_3-H_2O$ (RE = La, Nd, Sm, Eu) at 303 K

Hui Wang,* Xiao-Fang Wang, Fa-Xin Dong, and Xin-Quan Ran

Chemistry Department, Shaanxi Key Laboratory of Physico-Inorganic Chemistry, Northwest University, Xi'an 710069, People's Republic of China

Li Li

School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, People's Republic of China

Shi Yang Gao

Chemistry Engineering Institute, Lanzhou University, Lanzhou 730000, People's Republic of China

Equilibrium phase relations and the solubility data for the rare earth trichloride RECl₃·*n*H₂O (RE = La, n = 7; RE = Nd, Sm, Eu, n = 6) and cadmium chloride CdCl₂·2.5H₂O in the aqueous system were investigated. The corresponding equilibrium phase diagrams in the ternary system CdCl₂-RECl₃-H₂O at 303 K were constructed. The results showed that these systems were complicated and consisted of four stable equilibrium solid phases [CdCl₂·4.2, CdCl₂·2.5H₂O, CdCl₂·2.5H₂O, Cd₄RECl₁₁·*n*H₂O (n = 12, 14, 4:1 type), RECl₃·7H₂O] and a metastable phase [Cd₈-RECl₁₉·16H₂O (8:1 type)]. The new compounds Cd₄RECl₁₁·*n*H₂O and Cd₈RECl₁₉·16H₂O were found to be incongruently soluble in the systems. The 4:1 type compounds obtained were identified and characterized by the method of X-ray diffraction, thermogravimetry, and differential thermogravimetry (TG, DTG).

Introduction

Equilibrium phase diagrams of the quaternary systems CsCl- REX_3-HX-H_2O (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Yb, and Y; X = Cl, Br) were investigated. The corresponding solubilities were determined in our previous studies.¹⁻⁷ It is highly valuable and important for us to understand the phase relations and interactions of CsCl and RECl₃ in the aqueous medium. We found new compounds in these systems such as the 4:1 type Cs₄GdCl₇•H₂O, 5:3 type Cs₅Dy₃Br₁₄•24H₂O, and 5:2 type Cs₅RE₂Br₁₁·22H₂O. Moreover, the research results on these systems showed that the rare earth trichlorides have both comparabilities and dissimilarities, thus confirming that lanthanide rare earth elements are bordered by the Gd element showing "the effect of two groups" before and after Gd in the aqueous phase equilibrium of the quaternary system.^{6,7} These discoveries sparked us to further study phase equilibria systematically and find new types of compounds formed in the aqueous systems that had not been reported earlier in the related literature.

As a part of the systematic investigation on the ternary systems of rare earth chlorides (RE = La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, and Y), the phase diagrams of the CdCl₂-RECl₃-H₂O (RE = Ce, Pr, Dy, Y) ternary systems at 298 K have been determined in our previous reports.⁸⁻¹¹ Zhuo et al.⁸ reported the presence of five equilibrium solid-phase regions (CdCl₂· 2.5H₂O, CdCl₂·H₂O, Cd₄CeCl₁₁·12H₂O, Cd₆CeCl₁₅·14H₂O, and CeCl₃·7H₂O) in the CdCl₂-CeCl₃-H₂O ternary system, of which the Cd₄CeCl₁₁·12H₂O (4:1 type) was a stable and Cd₆-CeCl₁₅·14H₂O (6:1 type) was a metastable complex. For the

* Corresponding author. Phone: +86-029-13201808562. E-mail: huiwang@nwu.edu.cn.

Figure 1. Isothermal solubility diagram of the system $CdCl_2-LaCl_3-H_2O$ at 303 K.

CdCl₂–PrCl₃–H₂O system,⁹ four stable equilibrium solid phases (CdCl₂·2.5H₂O, CdCl₂·H₂O, Cd₄PrCl₁₁·12H₂O, and PrCl₃·7H₂O) and a metastable equilibrium phase (Cd₈PrCl₁₉·20H₂O) were observed. Qiao et al. re-examined the CdCl₂–YCl₃–H₂O¹⁰ and CdCl₂–DyCl₃–H₂O¹¹ systems and confirmed the presence of two stable complexes (Cd₄YCl₁₁·13H₂O and Cd₅Y₂Cl₁₆·26H₂O) and one metastable complex (Cd₈YCl₁₉·15H₂O) in the CdCl₂–YCl₃–H₂O ternary system, not to mention the YCl₃·6H₂O, CdCl₂·2.5H₂O and CdCl₂–DyCl₃–H₂O system is composed of four stable equilibrium solid phases: CdCl₂·2.5H₂O, CdCl₂·4.2O, Cd₉Dy₂Cl₁₁·29H₂O, and DyCl₃·6H₂O, respectively. The present paper is on the phase chemical relations of cadmium

Table 1. Solubility Data of the Ternary System $CdCl_2-LaCl_3-H_2O$ at 303 K

	composition of saturated solution (%) ^{<i>a</i>}		compos wet resi	ition of due (%)	
no.	CdCl ₂	LaCl ₃	$CdCl_2$	LaCl ₃	solid phase ^b
1	54.65	0.00	80.28	0.00	А
2	52.24	3.33	74.00	0.40	А
3	48.64	7.92	72.13	2.05	А
4	47.22	9.20	72.91	2.21	А
5	46.88	10.74	71.97	2.41	А
6	45.41	15.40	70.31	4.63	А
7	45.71	15.02	70.90	5.97	$A + A_1$
8	44.40	17.67	60.99	11.04	A_1
9	44.39	17.87	67.19	9.36	A_1
10	43.64	18.87	63.26	11.65	A_1
11	43.58	19.44	64.69	10.51	A_1
12	42.54	19.61	61.92	14.84	$A_1 + B$
13	42.32	19.56	51.61	17.92	В
14	41.82	20.40	60.05	15.75	В
15	41.04	21.12	52.84	18.23	В
16	33.81	28.22	42.50	25.30	В
17	33.63	27.17	60.08	17.94	В
18	32.88	28.11	54.85	19.71	В
19	30.79	31.21	55.38	21.77	С
20	29.47	31.86	52.79	23.12	С
21	23.99	38.88	27.93	37.21	С
22	24.65	38.30	37.95	32.82	C + D
23	23.95	39.14	19.26	45.74	C + D
24	23.65	39.66	10.87	54.83	C + D
25	20.06	41.08	7.19	56.40	D
26	15.78	41.77	5.28	58.12	D
27	7.89	45.52	2.05	60.59	D
28	0.00	48.32	0.00	66.04	D

^{*a*} Double saturation point (average). E₁: CdCl₂, 45.56 %; LaCl₃, 15.21 %. E₂: CdCl₂, 42.81 %; LaCl₃, 19.53 %. E₃: CdCl₂, 24.06 %; LaCl₃, 39.0 %. ^{*b*} Complexes: A, CdCl₂·2.5H₂O; A₁, CdCl₂·H₂O; B, Cd₈LaCl₁₉·16H₂O; C, Cd₄LaCl₁₁·12H₂O; D, LaCl₃·7H₂O.

Figure 2. Isothermal solubility diagram of the system $CdCl_2-NdCl_3-H_2O$ at 303 K.

chloride and light rare earth trichlorides in the $CdCl_2-RECl_3-H_2O$ (RE = La, Nd, Sm, Eu) systems. The aim is try to find more phase equilibria information on the $CdCl_2-RECl_3-H_2O$ ternary systems.

Experimental Section

Preparing Samples. CdCl₂·2.5H₂O, RE₂O₃ (RE = La, Nd, Sm, Eu), and 37 mass % HCl are of AR grade (all commercially available). RECl₃·nH₂O (n = 6 or 7) was crystallized from the solution of RE₂O₃, which was reacted with hydrochloric acid (37 mass % HCl). For detailed information on the preparation of RECl₃·6H₂O or RECl₃·7H₂O, see ref 12. The compositions of RECl₃·nH₂O were determined by analyzing Cl⁻ content by

Table 2. Solubility Data of the Ternary System $CdCl_2-NdCl_3-H_2O$ at 303 K

	composition of solution (%) ^{<i>a</i>}		compos wet resi	sition of due (%)	
no.	CdCl ₂	NdCl ₃	CdCl ₂	NdCl ₃	solid phase ^b
1	54.65	0.00	80.28	0.00	А
2	51.23	4.70	71.84	0.55	А
3	49.71	7.66	71.32	1.59	А
4	49.71	8.38	71.48	2.37	А
5	47.68	8.62	70.97	2.14	А
6	48.54	10.17	64.35	5.53	Α
7	47.96	11.80	66.30	5.94	$A + A_1$
8	47.68	11.09	66.58	6.27	A_1
9	45.19	14.95	67.53	7.56	A_1
10	45.44	15.26	65.54	7.94	A_1
11	45.4	15.06	61.13	9.79	A_1
12	44.53	15.60	59.03	11.09	A_1
13	44.94	15.81	63.92	9.09	A_1
14	44.29	17.97	65.14	10.31	A_1
15	44.10	18.01	59.54	14.17	$A_1 + B$
16	43.45	19.13	52.37	17.22	В
17	35.74	24.92	57.86	17.05	В
18	32.63	28.57	46.71	22.58	В
19	44.05	18.19	52.58	18.22	С
20	32.96	28.04	39.85	26.52	С
21	29.33	32.93	45.88	26.71	С
22	30.31	32.45	45.50	27.26	С
23	27.87	35.02	39.27	29.96	В
24	25.13	37.59	43.13	30.07	С
25	24.63	37.51	32.15	36.47	C + D
26	25.17	39.19	27.98	39.70	C + D
27	24.87	37.82	21.07	45.15	C + D
28	24.76	38.57	14.88	51.77	D
30	21.51	39.49	12.83	51.28	D
31	21.42	39.76	8.80	56.73	D
32	13.24	43.74	6.99	56.41	D
34	4.43	47.52	2.09	59.52	D
35	0.00	49.52	0.00	70.03	D
36		50.23		69.03	D

^{*a*} Double saturation point (average). E₁: CdCl₂, 47.82 %; NdCl₃, 11.45 %. E₂: CdCl₂, 44.15 %; NdCl₃, 18.06 %. E₃: CdCl₂, 24.91 %; NdCl₃, 38.14 %. ^{*b*} Complexes: A, CdCl₂·2.5H₂O; A₁, CdCl₂·H₂O; B, Cd₈NdCl₁₉· 16H₂O; C, Cd₄NdCl₁₁·12H₂O; D, NdCl₃·6H₂O.

Figure 3. Isothermal solubility diagram of the system $CdCl_2$ -SmCl₃-H₂O at 303 K.

titration with a normal solution of silver nitrate (0.1318 mol·dm⁻³) and RE³⁺ content by titration with EDTA solution (0.02247 mol·dm⁻³). The purity of the chemicals reached this way was found to be about 99.9 mass %. The analysis errors for those ions were relative and found to be better than \pm 0.2 %.

Investigations on the Ternary Systems at 303 K and Analysis Methods. The starting materials CdCl₂·2.5H₂O, RECl₃·*n*H₂O, and H₂O were mixed in different weight ratios. There were 28

Table 3. Solubility Data of the Ternary System $CdCl_2-SmCl_3-H_2O$ at 303 K

	composition of saturated solution (%) ^a		compos wet resi	sition of idue (%)	
no.	CdCl ₂	SmCl ₃	CdCl ₂	SmCl ₃	solid phase ^b
1	54.05	0.00	80.28	0.00	А
2	52.16	2.97	74.25	0.20	А
3	49.73	7.08	72.81	2.04	А
4	49.33	7.41	71.29	1.26	А
5	48.76	9.55	72.99	1.91	А
6	48.26	9.57	70.81	1.69	А
7	47.77	11.07	69.32	4.24	A_1
8	46.86	13.32	70.31	5.87	A_1
9	45.91	13.68	77.11	3.35	A_1
10	44.89	15.14	70.31	6.33	A_1
11	44.32	17.70	61.38	10.70	A_1
12	43.58	18.41	57.64	13.35	A_1
13	43.35	18.41	78.40	4.51	A_1
14	43.22	18.32	61.06	13.26	$A_1 + B$
15	43.67	18.55	51.35	16.63	В
16	34.56	26.71	47.89	22.04	В
17	32.79	27.97	51.85	20.79	В
18	31.21	31.89	40.28	27.80	В
19	30.28	33.38	37.88	29.42	В
20	27.43	35.30	54.65	22.44	В
21	39.95	21.38	48.55	20.79	С
22	37.03	23.96	46.36	22.15	С
23	32.81	28.99	41.72	26.18	С
24	32.54	28.69	40.38	26.05	С
25	31.52	30.80	42.13	26.45	С
26	27.59	36.31	16.93	50.36	C + D
27	27.44	36.23	23.67	46.78	C + D
28	27.06	36.02	40.59	31.78	C + D
29	26.82	36.99	40.50	32.71	D
30	25.43	37.47	7.79	60.35	D
31	16.30	41.08	4.43	62.24	D
32	6.75	45.55	1.99	63.62	D
33	4.68	46.35	1.65	61.74	D
34	0.00	48.78	0.00	70.39	D

^{*a*} Double saturation point (average). E₁: CdCl₂, 47.70 %; SmCl₃, 11.08 %. E₂: CdCl₂, 43.49 %; SmCl₃, 18.43 %. E₃: CdCl₂, 27.27 %; SmCl₃, 36.17%. ^{*b*} Complexes: A,CdCl₂·2.5H₂O;A₁,CdCl₂·H₂O;B,Cd₈SmCl₁₉·16H₂O; C, Cd₄SmCl₁₁·12H₂O; D, SmCl₃·6H₂O.

Figure 4. Isothermal solubility diagram of the system $CdCl_2-EuCl_3-H_2O$ at 303 K.

to 41 samples prepared. Each contained solid and liquid phases that were sealed in a plastic container. All the sealed samples were put in a big water tank with a thermostat fixed at 303 K and an electrical stirrer. The precision of the temperature was ± 1 K. The solid-liquid phase equilibrium was established for these samples after (6 to 10) days.

The saturated solutions and the corresponding wet solid phases (wet residues) of the samples were separated, taken out, and analyzed. For the analysis methods, see ref 9. The

Table 4.	Solubility	Data of	the '	Ternary	System	CdCl ₂ -	EuCl ₃ -H	I_2O
at 303 K								

	compos saturated so	composition of saturated solution (%) ^{<i>a</i>}		sition of due (%)	
no.	CdCl ₂	EuCl ₃	CdCl ₂	EuCl ₃	solid phase b
1	54.65	0.00	80.28	0.00	А
2	54.13	1.18	67.94	0.78	А
3	52.61	2.65	70.70	0.85	А
4	51.27	3.64	68.76	1.74	А
5	50.11	5.39	66.06	2.60	Α
6	49.75	6.39	76.18	0.80	Α
7	49.19	7.42	71.49	1.63	Α
8	47.13	10.12	72.37	2.74	Α
9	46.77	13.38	74.59	1.68	Α
10	45.86	13.30	78.05	3.04	$A + A_1$
11	45.29	14.58	74.10	4.28	$A + A_1$
12	46.00	13.89	66.74	8.30	A_1
13	43.31	16.12	59.27	10.38	A_1
14	43.87	16.37	59.43	11.15	A_1
15	44.15	16.48	61.84	10.10	A_1
16	41.68	18.47	64.83	10.26	A_1
17	43.26	18.61	71.95	7.65	A_1
18	43.01	18.57	64.55	12.68	В
19	42.09	19.44	57.03	16.25	В
20	42.19	19.37	58.67	15.56	В
21	38.09	22.73	65.32	13.41	В
22	33.86	26.12	60.39	16.18	В
23	33.58	26.94	48.74	21.32	В
24	32.55	28.52	64.66	14.93	В
25	31.33	29.35	50.01	21.35	В
26	30.53	31.23	55.67	18.97	В
27	28.86	34.01	42.18	26.72	В
28	28.75	34.32	55.59	20.06	В
29	28.57	34.16	33.89	38.84	B + D
30	41.41	19.18	49.62	20.40	C
31	38.72	21.55	47.70	20.92	C
32	29.28	33.76	41.43	28.16	C
33	27.20	36.03	45.06	29.23	C + D
34	27.45	36.17	36.07	34.96	C + D
35	27.24	36.04	20.67	47.08	C + D
30	27.12	35.62	25.17	46.19	C + D
51	27.56	33.93	31.29	37.51	C + D
38	24.57	37.73	9.78	57.37	D
39	9.99	45.35	3.05	65.15	D
40	4.16	47.18	1.34	62.28	D
41	0.00	50.04	0.00	/0.52	D

^{*a*} Double saturation point (average). E₁: CdCl₂, 45.98 %; EuCl₃, 13.79 %. E₂: CdCl₂, 42.56 %; EuCl₃, 18.79%. E₃: CdCl₂, 27.30 %; EuCl₃, 36.08 %. ^{*b*} Complexes: A, CdCl₂·2.5H₂O; A₁, CdCl₂·H₂O; B, Cd₈EuCl₁₉•16H₂O; C, Cd₄EuCl₁₁•14H₂O; D, EuCl₃•6H₂O.

Table 5. X-ray Powder Diffraction Data of Compounds Cd_4RECl_{11} $\cdot nH_2O$ (RE = La, Nd, Sm, Eu)

		parameter						
compound	<i>d</i> /nm	I/I_0	<i>d</i> /nm	I/I_0	<i>d</i> /nm	I/I_0	<i>d</i> /nm	I/I_0
Cd ₄ LaCl ₁₁ ·12H ₂ O	1.088	59	0.9646	100	0.5817	94	0.4892	18
	0.3276	22	0.2843	17	0.2609	12	0.1592	13
Cd ₄ NdCl ₁₁ ·12H ₂ O	1.3580	24	0.8308	97	0.6197	99	0.5133	48
	0.4782	36	0.3324	36	0.2915	84	0.2741	34
Cd ₄ SmCl ₁₁ ·12H ₂ O	1.3630	11	0.8308	93	0.6189	99	0.5847	14
	0.4156	35	0.3422	19	0.2914	22	0.2740	15
Cd ₄ EuCl ₁₁ ·14H ₂ O	1.1660	38	0.8631	59	0.6954	99	0.5548	27
	0.4329	18	0.3904	53	0.2930	86	0.1733	20

Table 6. X-ray Powder Diffraction Data of Initial Compounds

	parameter							
compound	<i>d</i> /nm	I/I_0	<i>d</i> /nm	I/I_0	<i>d</i> /nm	I/I_0	<i>d</i> /nm	<i>I</i> / <i>I</i> ₀
CdCl ₂ ·2.5H ₂ O	0.5850	100	0.2648	90	0.3270	70	0.1826	55
LaCl ₃ •7H ₂ O	0.2630	100	0.2210	100	0.2360	80	0.6600	70
NdCl ₃ •6H ₂ O	0.6500	100	0.3430	80	0.6006	30		
SmCl ₃ •6H ₂ O	0.5950	100	0.5079	70	0.3569	50		
EuCl ₃ •6H ₂ O	0.2500	100	0.2060	80	0.1468	40	0.211	30

composition of the new compounds in the systems was determined by the well-known wet residue method of Schreine-makers¹³ and checked by chemical analysis. The results of

Figure 5. X-ray powder diffraction spectrum of (A) Cd₄LaCl₁₁·12H₂O, (B) Cd₄NdCl₁₁·12H₂O, (C) Cd₄SmCl₁₁·12H₂O, and (D) Cd₄EuCl₁₁·14H₂O compounds.

analyses for the ternary systems are shown in Tables 1 to 4, respectively.

Equipment and Conditions. Thermal characterization of the new compounds was undertaken with a Parkin-Elmer TGA7/ 4(TG-DTG) thermoanalyzer that worked with a heating rate of 10 K/min under an Ar atmosphere with a flow rate of 60 cm³·min⁻¹. X-ray diffraction (XRD) measurements were performed in air by a D/Max-3C diffractometer using CuK α radiation, 50kV, and 80 mA at room temperature.

Results and Discussion

 $CdCl_2 + RECl_3 + H_2O$ (RE = La, Nd, Sm, Eu) Systems at 303 K. The solubility data of the CdCl_2-RECl_3-H_2O (RE = La, Nd, Sm, Eu) ternary systems at 303 K are listed in Tables 1 to 4, respectively. Figures 1 to 4 depict the corresponding phase equilibrium diagrams, respectively.

As can be seen in Figure 1, the curves of solubility consist of five branches in the ternary system $CdCl_2-LaCl_3-H_2O$, which correspond to the equilibrium solid phases $CdCl_2 \cdot 2.5H_2O$ (A), $CdCl_2 \cdot H_2O(A_1)$, $Cd_8LaCl_{19} \cdot 16H_2O(B)$, $Cd_4LaCl_{11} \cdot 12H_2O$ (C), and $LaCl_3 \cdot 7H_2O(D)$, respectively. This indicates that the phase regions of three new compounds $CdCl_2 \cdot H_2O(A_1)$, $Cd_8-LaCl_{19} \cdot 16H_2O(B)$, and $Cd_4LaCl_{11} \cdot 12H_2O(C)$ are formed in this system except for initial compounds A and D, of which compound B (8:1 type) is a metastable (dashed line) one while the C (4:1 type) is a stable one. Both of them are incongruently soluble in the aqueous system. The presence of the $CdCl_2 \cdot H_2O$ (A₁) in the $CdCl_2-LaCl_3-H_2O$ system implies that $LaCl_3$ can dehydrate crystal water from the $CdCl_2 \cdot 2.5H_2O$. The compounds of 8:1 type and 4:1 type have not been synthesized and reported in literature so far.

As far as the ternary system $CdCl_2-LaCl_3-H_2O$ is concerned, the equilibrium of the solid-phase regions was established after 5 days, and the metastable $Cd_8LaCl_{19}\cdot 16H_2O$ (8:1 type) detected by Schreinemakers method was relatively more precipitated in the first (5 to 6) days while the stable $Cd_4LaCl_{11}\cdot 12H_2O$ (4:1 type) was relatively less precipitated. The amount of stable Cd_4 - LaCl₁₁·12H₂O was found to increase gradually after 8 days. This indicates that the Cd₈LaCl₁₉·16H₂O complex in the aqueous system easy changed into Cd₄LaCl₁₁·12H₂O with increasing equilibrium time. This is just the cause of the mutual superposition of both phase regions Cd₈LaCl₁₉·16H₂O and Cd₄LaCl₁₁·12H₂O (see Figure 1) and an explanation why the 8:1 type was a metastable complex. Therefore, the 8:1 type complex is difficult to obtain from the ternary system CdCl₂–LaCl₃–H₂O, while the 4:1 type is obtained easily. The results of chemical analyses for the 4:1 type compound in mass percent are 20.79 % LaCl₃ and 61.06 % CdCl₂ (theoretical: 20.53 % LaCl₃, 61.39 % CdCl₂). This indicates that the compositions of the solid compounds determined by the Schreinemakers method are reliable.

We noticed in previous studies that the complexes of the 8:1 type and 4:1 type existed in the quaternary systems $CdCl_2$ – $LaCl_3$ –HCl– H_2O^{14} and $CdCl_2$ – $PrCl_3$ –HCl– $H_2O.^9$ They were congruently soluble and stable compounds. More importantly, both complexes were easy prepared from the quaternary system, a feature that differs from the ternary systems. This is probably caused by the existence of hydrochloric acid in the quaternary system. Moreover, the similar effects were observed in the $CdCl_2$ – $CeCl_3$ – H_2O as well as $CdCl_2$ – $CeCl_3$ –HCl– H_2O systems.⁸ This indicated that the phase behaviors for the light rare earth elements La, Ce, and Pr in the $CdCl_2$ – $RECl_3$ –HCl– H_2O ternary systems are similar.

Comparison between the Ternary Systems. As may be seen from Figures 2 to 4, the CdCl₂–RECl₃–H₂O (RE = Nd, Sm, Eu) systems belong to the same category as the CdCl₂–LaCl₃– H₂O system. Five solubility curves correspond respectively to the compounds of CdCl₂·2.5H₂O (A), CdCl₂·H₂O (A₁), Cd₈-RECl₁₉·16H₂O (B), Cd₄RECl₁₁·nH₂O (C, RE = Nd, Sm, n =12; RE = Eu, n = 14), and RECl₃·6H₂O (RE = Nd, Sm, Eu). The new compounds Cd₈RECl₁₉·16H₂O of 8:1 type (B) formed in these aqueous systems are metastable (dashed line) complexes while the Cd₄RECl₁₁·nH₂O of 4:1 type (C) complexes are the

Figure 6. Thermogravimetric curves of the (A) Cd₄LaCl₁₁·12H₂O, (B) Cd₄NdCl₁₁·12H₂O, (C) Cd₄SmCl₁₁·12H₂O, and (D) Cd₄EuCl₁₁·14H₂O compounds. -, TG; --, DTG.

Table 7. To	G-DTG Data	of Compounds	$Cd_4RECl_{11} \cdot nH_2O$	$(\mathbf{RE} = \mathbf{La})$, Nd, Sm	, Eu
-------------	------------	--------------	-----------------------------	-------------------------------	----------	------

		peak temp/K	loss of	wt/%	
compound	lost water number	DTG	experimental	theoretical	product
Cd ₄ LaCl ₁₁ ·12H ₂ O	lost 11H ₂ O	433.2	16.06	16.57	Cd ₄ LaCl ₁₁ ·H ₂ O
	lost H ₂ O	468.8	1.54	1.51	Cd ₄ LaCl ₁₁
	lost 12H ₂ O		17.60	18.08	
Cd ₄ NdCl ₁₁ ·12H ₂ O	lost 11H ₂ O	386.3	16.46	16.50	Cd ₄ NdCl ₁₁ ·H ₂ O
	lost 1H ₂ O	557.0	1.52	1.50	Cd ₄ NdCl ₁₁
	lost total 12H ₂ O		17.98	18.00	
Cd ₄ SmCl ₁₁ ·12H ₂ O	lost 11H ₂ O	430.8	16.29	16.42	Cd ₄ SmCl ₁₁ •H ₂ O
	lost 1H ₂ O	562.0	1.53	1.49	Cd_4SmCl_{11}
	lost total 12H ₂ O		17.82	17.91	
Cd ₄ EuCl ₁₁ •14H ₂ O	lost 3H ₂ O	345.4	4.41	4.35	Cd ₄ EuCl ₁₁ •11H ₂ O
	Lost 8H ₂ O	385.4	11.53	11.6	Cd ₄ EuCl ₁₁ ·3H ₂ O
	Lost 2H ₂ O	453.3	3.15	2.90	Cd ₄ EuCl ₁₁ ·H ₂ O
	Lost 1H ₂ O	562.2	1.51	1.45	Cd_4EuCl_{11}
	lost total 14H2O		20.25	20.26	

stable ones. As stated above, both the 8:1 type and the 4:1 type compounds were incongruently soluble in the aqueous systems. The results of the chemical analyses for the 4:1 type complexes (in mass percent) are 20.64 % NdCl₃ and 60.88 % CdCl₂ for the Cd₄NdCl₁₁•12H₂O; 20.86 % SmCl₃ and 61.24 % CdCl₂ for the Cd₄SmCl₁₁•12H₂O; and 20.46 % EuCl₃ and 58.33 % CdCl₂ for the Cd₄EuCl₁₁•14H₂O, which agree well with the theoretical values 20.89 % NdCl₃, 61.11 % CdCl₂, and 21.29 % SmCl₃ and 60.80 % CdCl₂, 20.78% EuCl₃, and 58.96% CdCl₂, respectively.

Characterization of the New Complexes Obtained from the Four Systems. Two kinds of the eight new complexes were found in the present ternary systems, which have not been reported in literature. Only X-ray powder diffraction data of the four compounds $Cd_4RECl_{11}\cdot nH_2O$ (RE = La, Nd, Sm, and Eu) of the 4:1 type are given in Table 5 due to the difficulty of obtaining similar data for the 8:1 type compounds directly. They are obviously quite different from the X-ray diffraction data of the initial compounds $CdCl_2\cdot 2.5H_2O$ and $RECl_3\cdot nH_2O^{15}$ (see Table 6). Figure 5 (panels A to D) contains the X-ray powder

diffraction patterns of the $Cd_4RECl_{11} \cdot nH_2O$ (RE = La, Nd, Sm, and Eu) compounds. These data and patterns indicate that the four compounds are new substances.

Thermogravimetry and differential thermogravimetry (TG, DTG) data of the Cd₄RECl₁₁•*n*H₂O (RE = La, Nd, Sm, and Eu) compounds in comparison with the theoretical weight losses are listed in Table 7; the corresponding graphs are displayed in Figure 6 (panels A to D). The purpose of the thermal analysis was to confirm the contents of crystal water in the Cd₄RECl₁₁•*n*H₂O compounds and to investigate the dehydrating properties of the 4:1 type complexes. Based on the total mass-loss values of the various complexes and their peak temperatures of dehydrating steps in the different range of temperatures, we suggest the dehydration equations for the four complexes:

$$Cd_{4}LaCl_{11} \cdot 12H_{2}O \xrightarrow{-11H_{2}O} Cd_{433 \text{ K}}$$

$$Cd_{4}LaCl_{11} \cdot H_{2}O \xrightarrow{-H_{2}O} Cd_{4}LaCl_{11} (1)$$

$$Cd_{4}NdCl_{11} \cdot 12H_{2}O \xrightarrow{-11H_{2}O} Cd_{4}NdCl_{11} \cdot H_{2}O \xrightarrow{-H_{2}O} Cd_{4}NdCl_{11} (2)$$

$$Cd_{4}SmCl_{11} \cdot 12H_{2}O \xrightarrow[431 \text{ K}]{} Cd_{4}SmCl_{11} \cdot H_{2}O \xrightarrow[562 \text{ K}]{} Cd_{4}SmCl_{11} (3)$$

$$Cd_{4}EuCl_{11} \cdot 14H_{2}O \xrightarrow{-3H_{2}O} Cd_{4}EuCl_{11} \cdot 11H_{2}O \xrightarrow{-8H_{2}O} \\Cd_{4}EuCl_{11} \cdot 3H_{2}O \xrightarrow{-2H_{2}O} \\Cd_{4}EuCl_{11} \cdot 3H_{2}O \xrightarrow{-2H_{2}O} \\Cd_{4}EuCl_{11} \cdot H_{2}O \xrightarrow{-H_{2}O} Cd_{4}EuCl_{11}$$
(4)

Conclusions

The solubilities of the ternary systems CdCl₂-RECl₃-H₂O (RE = La, Nd, Sm, and Eu) at 303 K were measured, and the corresponding phase diagrams were constructed. The compositions of the solid phases were determined by the Schreinemakers method and confirmed by chemical analysis. Two kinds of the new compounds (CdCl₂:RECl₃) of 8:1 type and 4:1 type were found to exist in the above systems besides the earlier reported systems CdCl₂-CeCl₃-H₂O and CdCl₂-PrCl₃-H₂O. The 8:1 type compounds are unstable for the complexes, while the 4:1 type compounds are stable. Both of them are incongruently soluble in the ternary systems. These results showed that the phase equilibrium regions and the composition of the new compounds (the 8:1 or 4:1 type) in the ternary systems $CdCl_2$ -RECl₃-H₂O (RE = La, Ce, Pr, Nd, Sm, and Eu) are very similar. It should be noted that these rare earth elements are all in front of Gd in the lanthanide series. This indicates the similarity of light rare earth elements in the phase equilibria behaviorus. Comparing the reported quaternary systems containing also HCl with the present ternary systems, the discussion in the preceding sections has shown that the compounds of the 8:1 type and the 4:1 type were present in both kinds of systems, but the compounds of the 8:1 and the 4:1 types are congruently soluble in the quaternary system and incongruently soluble in the ternary system.

Literature Cited

- Li, Y. H.; Ran, X. Q.; Chen, P. H. Studies on solvent system of cesium chloride and lanthanum chloride and synthesization of four types of new compounds. J. Rare Earths 1997, 15 (2), 113–116.
- (2) Jiao, H.; Wang, H.; Ran, X. Q.; Chen, P. H. Study on the quaternary system of CsCl-NdCl₃-13% HCl-(42% HOAc)-H₂O. *Acta Chim. Sin.* **1998**, *56*, 854-858 (in Chinese).
- (3) Li, Y. H.; Ran, X. Q.; Chen, P. H. Phase behavior of hydrochloric aqueous solution containing cesium and samarium chloride and two sub-group effect of the light rare earth element, *Zh. Neorg. Khim* 1999, 44 (7), 1207–1209.
- (4) Wang, H.; Ran, X. Q.; Chen, P. H. Phase chemistry of CsBr and PrBr₃ reacting in hydrobromic acid. *Chin. Sci. Bul.* **1996**, *41* (11), 910–915.
- (5) Wang, H.; Duan, J. X.; Ran, X. Q.; Gao, S. Y. Phase equilibrium system of CsCl-YCl₃-(9.5%) HCl-H₂O at *T* = 298.15 K and its compounds. *Chin. J. Chem.* **2004**, 22 (10), 1129–1132.
- (6) Wang, H.; Duan, J. X.; Ran, X. Q.; Gao, S. Y. Study on the phase diagram of CsCl-CeCl₃-HCl (11%)-H₂O system at 298.15K and the fluorescence properties of its compounds. *Chin. J. Chem.* 2002, 20 (9), 904–908 (in English).
- (7) Wang, H.; Duan, J. X.; Ran, X. Q.; Gao, S. Y. Study on phase diagram of CsCl-EuCl₃-0.11HCl-H₂O quaternary system at *T* = 298.15 K and the fluorescence spectra of its compounds. *J. Chem. Thermodyn.* 2002, 34 (9), 1495-1506.
- (8) Zhou, L. H.; Qiao, Z. P.; Guo, Y. C.; Wang, H. Phase equilibrium of the CeCl₃-CdCl₂-H₂O and CeCl₃-CdCl₂-HCl-H₂O systems. *Acta Phys.-Chim. Sin.* **2005**, *21* (2), 128–133 (in Chinese).
- (9) Wang, H.; Li, L.; Ran, X. Q.; Wang, X. F.; Gao, S. Y. Studies on phase equilibria in the systems $CdCl_2$ -PrCl₃-HCl (8.3%)-H₂O and $CdCl_2$ -PrCl₃-H₂O at 298 ± 1 K. J. Chem. Eng. Data **2006**, 51, 1541-1545.
- (10) Qiao, Z. P.; Zhou, L. H.; Wang, H. Study on the phase diagram of YCl₃-CdCl₂-H₂O system and YCl₃-CdCl₂-HCl (8.89%)-H₂O at 298.15 K and their compounds characterized. *Chin. J. Inorg. Chem.* 2004, 20 (8), 929–934 (in Chinese)
- (11) Qiao, Z. P.; Zhou, L. H.; Guo, Y. C.; Wang, H. Phase equilibrium of the DyCl₃-CdCl₂-H₂O and DyCl₃-CdCl₂-HCl(~8%)-H₂O System at 298.15 K and characterization of new compounds. *Chin. J. Inorg. Chem.* 2005, 21 (11), 1667–1672.
- (12) Meyer, G.; Volkmar, V. Synthesis and structures of A₂REX₅-type halides (RE = rare earth). J. Less-Common Met. **1983**, 93 (2), 452.
- (13) Chen Y. S. Analysis of Physical Chemistry; Higher Eduction Press: Beijing, 1988; pp 505-506 (in Chinese).
 (14) Li, L.; Wang, H.; Xia, S. P.; Hu, M. C.; Gao, S. Y. A study on the
- (14) Li, L.; Wang, H.; Xia, S. P.; Hu, M. C.; Gao, S. Y. A study on the phase diagram of the LaCl₃–CdCl₂–(9.7%)HCl–H₂O system at 298 K and its compounds characterized. *Chin. J. Inorg. Chem.* **2003**, *19* (2), 201–205 (in Chinese).
- (15) Powder Diffraction File. Alphabetical Index Inorganic Phases; Sets 21 to 22. Inorganic Volume. No. PDIS-22iRB; JCPDS International Centre for Diffraction Data: Swarthmore. PA, 1989; (a) p144; (b) pp146–150.

Received for review July 19, 2006. Accepted January 19, 2007.

JE0603224